Hal	llic	ket N	Numb	er:			 	
								Code No. : 17656 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) VII-Semester Main & Backlog Examinations, Dec.-23/Jan.-24 Compiler Construction

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	List the major data structures in a compiler	2	1	1	1
2.	Define token. Consider the set of tokens, {ab, abc, abd, b, bc, bb, ca, cd, da, daa}. What is the sequence of maximal length tokens generated from the input "abcabbdaadacaabcbb".	2	4	1	2
3.	Describe Handle Pruning with an example.	2	1	2	2
4.	Eliminate left recursion from the CFG, $G1 = (\{a, b, c, d\}, \{A, B\}, P, A)$, where $P = \{A \rightarrow Aa \mid Aab \mid Bc, B \rightarrow BAa \mid d\}$.	2	3	2	2
5.	Draw the syntax tree and DAG for the following expression $((((c*d)+(a+b))*(c*d))+d)$	2	2	3	1
6.	Distinguish between synthesized attributes and inherited attributes.	2	2	3	1
7.	List the various fields of an activation record	2	1	4	1
8.	Identify the optimization technique used for optimizing the following code for(i=1;i<=50;i++)	2	2	4	1
	{ x=i*7;				
	}				
9.	Calculate the instruction cost of the following code sequence MOV X,R0 MOV Y,R1 SUB R1,R0	2	3	5	2
	BLTZ R0,*R3				
10.	Describe peephole optimization techniques with an example.	2	1	5	1
	Part-B ($5 \times 8 = 40 \text{ Marks}$)	-00			
11. a)	Explain the different phases of a compiler with a neat diagram. Show the output of each phase of the compiler for the following code segment and explain briefly	5	2	1	1
	E=0.5* m*v*v;				
b)	What is LEX? Explain in detail different sections of LEX program. Write a LEX program to recognize Unsigned integers in the program.	3	2	1	1

Code No.: 17656 N/O

:2::

12. a) Write a Recursive Descent Parser for the following gran	nmar 3	2		
S→cAd	accreation of	3	2	1
A→ab a	& start remark by			
and for the input "cad" and trace the parser.	eligano)			
b) Construct an SLR parsing table for the grammar G: S→ R → L. Is it SLR(1) grammar?	$L=R R, L \to *R id, \int$	4	2	1,2
13. a) Define SDD. Write the syntax directed definition for grammar and also draw the annotated parse tree for the	or desktop calculator 4 input string 3*5-4	3	3	1
b) What is a three-address code? Translate the follow quadruple, triple, and indirect triple structures.	wing expression into 4	4	3	1
a[i]=a+(b*c+d)	Capsular the sec of justice			1
14. a) Discuss stack based run time environment with an exam	iple. 3	2	4	1
b) Generate the 3-address code for the following progra obtain the basic blocks for generated code	mming construct and 5	3	4	1,2
i=1	DHD and takes the moon of			* 1. 2.
do				
sum=sum+a[i]*b[i] $i=i+1$	om tel D. C. In Cass			
while(i<=20);	1			
15. a) Explain various issues in the design of the code generati	on phase	1	5	1
b) Construct machine code for the following statements.		3	5	1
each scalar variable is 4 bytes long A=B[i] C=D[j] E=A+C	Assume the size of 4	3		2
16. a) Describe input buffering strategy used in lexical analysis	s phase.	2	1	1
b) Consider the grammar	4	4	2	
S→xABC	4	4	2	1,2
A→a bbD				
B→a ε	lot with personners in			
C→b ε				
D→c ε	9		, Vula	
Construct predictive parsing table for the given grammar	r.		N R IS	
17. Answer any <i>two</i> of the following:	9 8 5			
a) Explain L-Attributed definition with suitable example	ioriani quita surrene, al., 4	1	3	1
b) What are the principal sources of optimization in a suitable examples.	code? Illustrate with 4	2	4	1
c) Describe Register allocation using graph coloring with a	n example 4	2	5	1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	31.25%
iii)	Blooms Taxonomy Level – 3 & 4	48.75%